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 ABSTRACT: The aim of this study was to evaluate the influence of overtorque on integrity, strength and stress on
external hexagonal implants (EH), with two different grades (N=10): conventional (C), grade 4; and modified (M), grade 4
with thermal treatment. The dimensions of EH were 3.75 × 13 mm; the specimens were fixed and submitted to SEM analysis
and image acquisition. The abutment was then retained with 70 N/cm, re-analyzed by SEM, and a second image was
obtained. The images were analyzed by Image J software (1.44o- NIH, USA) for dimensional variations measurement on
surface of the hexagonal area. The finite element method was applied with a similar compliance to calculate the resultant
stress (MPa) during the torque. Results were statistically analyzed with t-student test (5 %). The dimensional accuracy of M
(0.22 mm2) was statistically significant (p<0.05). Minimum principal stress and von-Mises stress of C (-19.95 MPa, -19.94
MPa), were lower than M values (-55.83 MPa, -55.96 MPa), respectively. However, the M group showed lower deformation
than C group. Therefore, more rigid titanium alloy is a promising alternative to avoid plastic deformation of prosthetic connections
even concentrating higher stress magnitude on its structure.
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INTRODUCTION
 

In contemporary dentistry, the use of
osseointegrated dental implants for rehabilitation of
patients continued to expand as treatment option for
both single and multiple rehabilitation (Adolfi et al.,
2020; Matos et al., 2020; Silveira et al., 2021).
 

The increase in the use of single implants has
resulted in several studies, and the most reported
biomechanical complications are the precision fit
between the implant and abutment (Tribst et al., 2021),
deformations of the hexagon surface (Romero et al.,
2000; Renner, 2000; Khraisat et al., 2004; Segundo et
al., 2007; Melo-Filho et al., 2019; Rodrigues et al.,
2020), the rotational freedom between implant fixation

and abutment (Bambini et al., 2005), dimensional
changes and machining tolerances on prosthetics
connections (Schulte, 1994; Malaguti et al., 2011),
loosening or fracture of prostheses screws (Chen et
al., 2021).
 

All of these factors are directly affected by the
dental material with which implants are made. In ge-
neral, implants are made of titanium (cp Ti) owing to
its properties such as biocompatibility, mechanical
resistance to fatigue and corrosion (Li et al., 2020).
 

According to the ASTM (F67), cp Ti is classified
according to its hardness, being grade 1 the lowest
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hardness and grade 4, the highest. Initially the
manufacturers used cp Ti grade 2 to make implants;
however, deformation has been reported on the
implants connection (Bambini et al.).
 Nowadays, the manufacturers successfully
applied the CP grade 4 alloys, which have shown
improved mechanical properties, such as higher
elasticity modulus and high corrosion resistance
(Bambini et al.), as mean to increase dimensional
stability and avoid biomechanical complications.
 

Deformation occurs during the installation
process. Throughout surgery, implants should be fixed
using a maximum force that is easily surpassed by the
professional. For Kwon et al. (2009), overtorque occurs
when above 45 N/cm. Thus, deformation is a
consequence of excessive torque (Bambini et al.) or a
result of torquing with inadequate instruments (Kwon
et al.).
 

Literature is scarce as to the information about
deformation of external hexagon implants with different
grades. Most studies (Khraisat et al., 2006; Kano et
al., 2007; Malaguti et al.; Junqueira et al., 2013) state
that prosthetic connections deformation is a result of
overtorque between the abutment and the implant
platform.
 

The purpose of this study was to evaluate, in
vitro and in silico, the deformation caused by overtorque
on external hexagon implant platforms manufactured
with two different CP Ti grades. The hypothesis is that
implants with higher grade will present higher
microhardness and less deformation.
 

MATERIAL AND METHOD

Scanning electron microscopy – SEM. Ten (n=10)
CP Ti external hexagons implants were used in this
study (Conexão Sistema de Próteses, Arujá, São
Paulo, Brazil). The implants were divided into two
groups (n=5) according to their hardness, specified by
the manufacturer. The groups were named:
Conventional (C) - conventional implants made of grade
4 cp Ti; and Modified (M) – implants made of grade 4
cp Ti, modified by the manufacturer through physical
process.
 

All implants were positioned into a metallic
matrix, identified and analyzed with a Scanning
Electron Microscope (SEM - Inspect S50 – FEI
Worldwide Corporate Headquarters, Oregon, USA) at
70 × magnification rate. The images were exported to
Image J® software (Image Processing and Analysis in
Java – National Institutes of Health - USA) and the
surface measurements were performed (Fig. 1).
 

For image analysis, at the beginning of each
measurement, calibration was performed using
functions “Straight” and “Analyze - Set Scale”.
Subsequently, the total area measurement of the
hexagon was performed using functions “Polygon
Selections” and “Analyze – Measure”.
 

For assembling simulation, a manual torque
wrench was used (Connection Implant System, Arujá,
São Paulo, Brazil), with maximum torque limit established
at 70 N/cm. For overtorquing, 10 % of this limit was
exceeded; therefore, a torque of 77 N/cm was applied.
 

Implants were connected to the assemblers and
submitted to overtorque through a digital torquemeter
(Lutron/TQ-8800). Implants were then positioned into
a metallic matrix, identified and analyzed with SEM
under the same magnification. The images were
uploaded into ImageJ® (Wayne Rasband National

Fig. 1. A) Original SEM
image; B) Delimitation of
initial hexagonal area on
Image software.
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Institute of Health, USA) for total area and angle
measurement (AI2), using the same previously
described methodology.

Afterwards, initial area (AI) was subtracted from
post-torque area (AF), according to equation (1) below:
 
                         D

resulting
 = A

initial
 – A

final
       

 
A second step was performed to measure the

average angle of the hexagon vertices. The vertices
were identified and measured (QI) before torque. After
torque, the vertices were again measured (QF). The
resulting angle was calculated for each vertex (QR QI
= - QF) and the average angle was calculated for each
hexagon. To measure the angles, "angle tool" and
"measure" functions were used (Fig. 2).
 

The area and angle results were submitted to
Anderson-Darling normality test and student’s t-test.

elements (Fig. 3). All materials were considered li-
near, elastic, homogeneous and isotropic. Young’s
modulus was 110 and 200 GPa  respectively to C
and M implants.

Fig. 2. Demonstration of hexagon angles measurement of specimens.

Fig. 3. Torque wrench and implant in the numerical model
used in the present simulation.
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Microhardness. The Vickers microhardness of both
materials was measured with a load of 19.614 N for 20
s (Microhardness tester HMV-2 Shimadzu Corp., Kyoto,
Japan). The microhardness values were obtained from
two samples of each material (four measurements into
square specimens of 20 X 20 mm).
 
Finite Element Analysis. A 3D implant model was
designed with CAD software (Rhinoceros 4.0 -
McNeel North America, Seattle, WA, USA), and
exported to the computer aided engineering software
( ANSYS version 16.0, ANSYS Inc., Houston, TX,
USA) where the experimental setup was performed.
For that the mesh had 188.254 nodes and 106.976

A mesh convergence test was conducted and
an element edge value that did not interfere with the
results was set (0.1 mm). The contact interface
between the implant and torque wrench allowed
sliding but not the separation of these nodes (no
separation). The implant base was fixed to the first
threaded region to simulate experimental condition.
A 70 N torque was applied and the static structural
analysis was performed.
 

Stress maps with Minimum principal stress and
von-Mises stress criteria were recorded and used to
the models comparison.
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RESULTS
 

Area measument after overtorque. For each
specimen, the differences between the initial and final
hexagonal areas (AR = AI - AF) are presented in Table
I. When considering the numerical modulus, data were
normally distributed (p - value = 0.658).

The material flow also varied according to the
axis in which it occurred, vertical or horizontal. However,
for this study, only the horizontal axis was considered.
The means and standard deviations are shown in Table
II; group values were statistically significant (p-value =
0.008). The representative images of C and M groups
are shown in Figure 4.

At a second stage, the reduction on the hexagons
vertices angles was calculated after overtorque. In Table
II, the mean and standard deviations are presented for
both groups. Group C showed greater instability with
larger standard deviation than the modified group,
besides higher average variation.
 
Microhardness. The Vickers microhardness was
significantly different between the materials (p=0.000).
The microhardness of M specimens (304.8 ± 19.26
VHN) was significantly higher than the ones of group
C (247.67 ± 14.99 VHN).
 
Finite Element Analysis.  The model corresponding
to C group had higher minimum principal stress (MPS)
which is about three times greater than the one found
in the modified group. The stress distribution at group
C covered the entire hexagonal surface, whereas in
group M, stress distribution was restricted to the
vertices of the hexagon.
 

Similarly,von-Mises stress (MSS) was three times
bigger in C, compared to M’s. However, MSS of group C
was concentrated at the hexagon vertices.
 

DISCUSSION
 

Group Mean and Standard Deviation (SD)
(mm

2
)

Conventional -0.178 ± 0.055
Modified  0.235 ± 0.178

Fig. 4. Post-torque photomicrographs. Group M specimen; and group C specimen
after overtorque, with evident deformation of hexagon vertices observed in the most
flexible alloy implant.

Table I. Differences between the initial and final hexagonal
areas per specimen, on each group.

Group Mean (°) and Standard Deviation
(SD)

Conventional 29.91±20.35A

Modified 6.01±5.57B

Table II. Average reduction of complementary hexagon
vertices angles.

Titanium (Ti) is classified
by its hardness grade,
commercially pure and graded
1-4 according to ASTM F67. The
cp Ti has tracing alloy element
components only, which do not
adversely affect its biological
properties, but influences its
mechanical properties. When
implants started to be produced,
they were made of cp Ti grade
2. Later, they started to be made
of cp Ti grade 4, which has
increased mechanical
properties. In 2013 modified
implants grade 4, which have

The Table shows positive and negative values,
which resulted from sustained flow type. When the fi-
nal area was greater than the initial (extension), a
negative value was obtained; on the contrary, when
there was a final area decrease (constriction), positive
values were obtained, as per presented equation. The
moduli of these values were used for the calculations
because the materials present different ductility and
different flow behavior. The results showed statistically
significant difference between the different materials
(p=0.000).

SILVA, A. M.; MATOS, J. D. M.; TRIBST, J. P. M.; LOPES, G. R. S.; MARTINELLI, C. S. M.; BORGES, A. L. S., KIMPARA, E. T.; NOGUEIRA JR, L.; DE MELO, R. M. & BOTTINO,
M. A. Effect of titanium hardness on the integrity and stress concentration of external hexagon dental implants.  Int. J. Odontostomat.,  15(4):1053-1059, 2021.



1057

Group M showed higher hardness than group
C. The values obtained by C group are similar to
those literature-evidenced (Faria et al., 2011, 2012),
thus, the hardness values obtained by with M group
are superior to those found in literature. This may
have contributed to lower strain in M, tending to
smaller change area. The same can be observed
on hexagons vertices strain, wherein group C, strain
was five times greater than M.
 

The deformed hexagon angles may indicate
greater rotation degree in this group, which may incur
in various clinical disorders, including the
contraindication for use in unitary cases. Moreover,
several studies have found a correlation between
rotational freedom and screw loosening at the
abutment-implant interface (Malaguti et al.; Tribst et
al., 2018, 2021). In the present study, a unique
setting was presented, in which the implant
connection was exposed to a 10 % standard value
overtorque.
 

Clinically, the EH implant connection may be
repeatedly exposed to the condition of torque,
installation processes, molding, casting tests and
esthetics. These steps, when improperly performed,
may compromise the hexagon vertices integrity.
Thus, when overtorquing occurs frequently, the
material behavior and implant assembly survival/
abutment become overestimated as versed in
literature; and the freedom degree and torque loss
become more severe than estimated.
 

It can be assumed that, in the initial torque
application on abutments screws, as much as in the
initial torque for implant fixing, part of the energy is
consumed in the friction between the surfaces of
the assembler and the hexagon and may result in
micro deformations (Kano et al., 2006). When torque
is applied on these surfaces as it was for the present
study, it receives higher energy than the implant’s
elastic limit, resulting in plastic deformation as shown
in Figures 2b and 2d. This study observed, in vitro
and in silico, that the higher the elasticity modulus,
the lower is the plastic deformation and this confirms
this study’s hypothesis.
 

At the time of implant screw insertion into the
receiver bone, the professional may often exceed
the strength limit specified by the manufacturer, in
the case, 70 N, results which indicate that C group,
showed higher stress at hexagons corners. In
assorted implants, it was possible to ascertain larger

Fig. 5. Stress maps. A) Minimum principal stress with rigid
alloy, C) Minimum principal stress with the flexible alloy, D)
von-Mises stress with rigid alloy and F) von-Mises stress
with flexible alloy.

higher elasticity modulus to cp Ti grade 4 standard,
began to be commercially viable. In this study, the
microhardness of two materials (conventional and
modified) and both in vitro and in situ materials strains
in the connection area of the implant external hexagon
were tested.
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plastic deformation with substrate disposal
promoting greater mismatch of the prosthetic
component (Melo-Filho et al.) whose study evaluated
the external connection of dental implants with even
greater rotation degree.
 

As in the primary insertion, strength could
result in hexagon surface deformation and this was
stricter in group C. Exacerbated by the effect
described according to Kano et al. (2007), the
induced stress on EH gaps and at the abutment
implant intersection, could burnish the sharp gaps
angles and rotate prosthetic crowns.
 

The linear statical analysis of the different
implants showed that group M model had the higher
stress concentration (Figs. 5a and 5b) in the hexagon
corners (59.83 MPa) than in the group C model
(19.94 MPa). It is possible to predict, according to
Von Misses analysis (Figs. 5c and 5d), which vertices
are deformed above material elastic limit and that
deformation in group C will be more severe than in
M (Theoharidou et al., 2008).
 

Even if the two studied materials showed
statistically significant differences of hardness
grades, it is possible that both materials display same
microstructural configuration, due to their
classification (both grade 4). In general, these
materials have a phase only at room temperature
(Ohkubo et al., 2003), which leads to more stability
and more mechanical resistance. However, more
studies are required to characterize structural and
mechanical differences between these materials.
 

 It was possible to conclude that the studied
materials are mechanically different and that
modified grade 4 was harder and, consequently,
shows less plastic deformation even with high stress
magnitude when subjected to overtorque. Therefore,
this material can contribute to the reduction of
rotational freedom and loosening of prosthetic
screws.
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RESUMEN: El objetivo de este estudio fue evaluar
la influencia del sobrepar en la integridad, la fuerza y la
tensión en los implantes hexagonales externos (EH), con
dos grados diferentes (N = 10): convencional (C), grado 4;
y modificado (M), grado 4 con tratamiento térmico. Las di-
mensiones de EH eran 3,75 de diámetro x 13 mm de lon-
gitud; las muestras se fijaron y se sometieron a análisis
SEM y adquisición de imágenes. A continuación, el pilar
se retuvo con 70 N / cm, se volvió a analizar por SEM y se
obtuvo una segunda imagen. Las imágenes se analizaron
con el software Image J (1.44o-NIH, EE. UU.) Para medir
las variaciones dimensionales en la superficie superior del
área hexagonal, que fue causada por un par excesivo. El
método de los elementos finitos se aplicó con un cumpli-
miento similar para calcular la tensión resultante (MPa)
durante el par. Los resultados se analizaron
estadísticamente con la prueba t-student (5 %). La preci-
sión dimensional de M (0,22 mm2) fue estadísticamente
significativa (p <0,05). La tensión principal mínima y la ten-
sión de von-Mises de C (-19,95 MPa, -19,94 MPa), fueron
inferiores a los valores de M (-55,83 MPa, -55,96 MPa),
respectivamente. Sin embargo, el hexágono del grupo M
mostró menor deformación que el grupo C. Por lo tanto, la
aleación de titanio más rígida es una alternativa promete-
dora para evitar la deformación plástica de las conexiones
protésicas incluso concentrando una mayor magnitud de
tensión en su estructura.
 

PALABRAS CLAVE: implantes dentales, análisis
de elementos finitos, aleaciones dentales.
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